A spectral sequence proof of Reisner's criterion

Oscar Harr

June 22, 2020

Abstract

We prove Reisner's criterion using the two spectral sequences arising from the partition/Koszul double complex introduced in [Adi18]. ${ }^{1}$

Let k be a field. Recall that an abstract simplicial complex Δ is said to be Cohen-Macaulay (over k) if its face ring $k^{*}[\Delta]$ is a Cohen-Macaulay ring. Reisner's criterion allows us to understand this important property on a geometric level:

Theorem (Reisner's criterion [Rei76]). An abstract simplicial complex Δ is Cohen-Macaulay over k if and only if for every face $\sigma \in \Delta$, the link $\mathrm{Lk}_{\sigma} \Delta \subseteq \Delta$ satisfies

$$
\begin{equation*}
\widetilde{H}^{i}\left(\operatorname{Lk}_{\sigma} \Delta ; k\right)=0, \quad 0 \leq i<\operatorname{dim} \operatorname{Lk}_{\sigma} \Delta \tag{1}
\end{equation*}
$$

Proof. Induction on $\operatorname{dim} \Delta=d-1$. For $\operatorname{dim} \Delta=0$, both the CohenMacaulay property and the vanishing condition (1) are always true.

Assume the statement is true in dimensions strictly less than $\operatorname{dim} \Delta>0$. Then (1) holds if and only if ${ }^{2}$
(i) $\widetilde{H}^{i}(\Delta)=0$ for $0 \leq i<\operatorname{dim} \Delta$ and
(ii) $\mathrm{St}_{\sigma} \Delta$ is Cohen-Macaulay for each $\varnothing \neq \sigma \in \Delta$.

[^0]Indeed, for each $\sigma \neq \varnothing$ we have $\mathrm{St}_{\sigma} \Delta=\mathrm{Lk}_{\sigma} \Delta * \sigma$, so

$$
k^{*}\left[\operatorname{St}_{\sigma} \Delta\right] \cong k^{*}\left[\operatorname{Lk}_{\sigma} \Delta\right] \otimes k^{*}[\sigma]
$$

Hence $\mathrm{St}_{\sigma} \Delta$ is Cohen-Macaulay if and only if $\mathrm{Lk}_{\sigma} \Delta$ is Cohen-Macaulay. Since σ is nonempty, $\operatorname{dim} \operatorname{Lk}_{\sigma} \Delta=\operatorname{dim} \Delta-\operatorname{dim} \sigma-1<\operatorname{dim} \Delta$, so by the induction hypothesis $\mathrm{Lk}_{\sigma} \Delta$ is Cohen-Macaulay if and only if $\mathrm{Lk}_{\tau}\left(\mathrm{Lk}_{\sigma} \Delta\right)=$ $\mathrm{Lk}_{\tau \sigma} \Delta$ has vanishing homology except in the top dimension for each $\tau \in$ $L_{k} \Delta$, and as σ varies over the nonempty faces this condition is just (ii). Similarly, if Δ is assumed to be Cohen-Macaulay, then every star $\mathrm{St}_{\sigma} \Delta$ is again Cohen-Macaulay. Thus at the induction step we may assume that every proper star is Cohen-Macaulay.

We may also assume that Δ is of pure dimension. Indeed, Cohen-Macaulay local rings are of pure dimension, so Cohen-Macaulay complexes are puredimensional. If Δ satisfies (i) and (ii) then every proper star in Δ is CohenMacaulay and thus pure-dimensional. But $\widetilde{H}^{0}(\Delta)=0$, so Δ must be of pure dimension.

It only remains to prove that for Δ of pure dimension and having all proper stars Cohen-Macaulay (i.e. for Δ a Buchsbaum complex), the CohenMacaulay property for Δ is equivalent to $\widetilde{H}^{i}(\Delta)=0$ for $0 \leq i<\operatorname{dim} \Delta$.

Let \mathcal{R} be the polynomial ring over the vertices of Δ and choose $\theta_{1}, \ldots, \theta_{d} \in$ $\mathcal{R}^{1}=k^{1}[\Delta]$ to be some linear system of parameters for Δ. Then $k^{*}[\Delta]$ is Cohen-Macaulay if and only if $H^{i}\left(K^{\bullet} \otimes_{\mathcal{R}} k^{*}[\Delta]\right)=0$ for $i \neq d$, where $K^{\bullet}=K^{\bullet}\left(\theta_{1}, \ldots, \theta_{d}\right)$ is the Koszul (cochain) complex. Also, let \widetilde{P}^{\bullet} denote the unreduced partition complex

$$
0 \rightarrow k^{*}[\Delta] \rightarrow \bigoplus_{v \in \Delta^{(0)}} k^{*}\left[\mathrm{St}_{v} \Delta\right] \rightarrow \cdots \rightarrow \bigoplus_{F \in \Delta^{(d-1)}} k^{*}\left[\mathrm{St}_{F} \Delta\right] \rightarrow 0
$$

which equals the (reduced) simplicial cochain complex of Δ in monomial degree 0 (so we must put $k^{*}[\Delta]$ in cochain degree -1), but is exact in positive degrees. We have two spectral sequences for computing the homology of $\operatorname{Tot}^{\bullet}=\operatorname{Tot}^{\bullet}\left(K^{\bullet} \otimes_{\mathcal{R}} \widetilde{P}^{\bullet}\right)$, namely the column-wise spectral sequence

$$
{ }^{\prime} E_{2}^{s, t}=H_{I I}\left(H_{I}^{s, t}\left(K^{\bullet} \otimes_{\mathcal{R}} \widetilde{P}^{\bullet}\right)\right) \Rightarrow H^{s+t}\left(\operatorname{Tot}^{\bullet}\right),
$$

and the row-wise spectral sequence

$$
{ }^{\prime \prime} E_{2}^{s, t}=H_{I}\left(H_{I I}^{s, t}\left(K^{\bullet} \otimes_{\mathcal{R}} \widetilde{P}^{\bullet}\right)\right) \Rightarrow H^{s+t}\left(\operatorname{Tot}^{\bullet}\right)
$$

Since every proper star of Δ is Cohen-Macaulay, we have

$$
H_{I}^{s, t}\left(K^{\bullet} \otimes_{\mathcal{R}} \widetilde{P}^{\bullet}\right)=\bigoplus_{f \in \Delta^{(t)}} H^{s}\left(K^{\bullet} \otimes_{\mathcal{R}} k^{*}\left[\operatorname{St}_{f} \Delta\right]\right)=0
$$

for $s \neq d$ and $t \geq 0$. For $s=d$, the complex $H_{I}^{d, \bullet}\left(K^{\bullet} \otimes_{\mathcal{R}} \widetilde{P}^{\bullet}\right)$ is the reduced partition complex

$$
0 \rightarrow \mathscr{A}^{*}[\Delta] \rightarrow \bigoplus_{v \in \Delta^{(0)}} \mathscr{A}^{*}\left[\mathrm{St}_{v} \Delta\right] \rightarrow \cdots \rightarrow \bigoplus_{F \in \Delta^{(d-1)}} \mathscr{A}^{*}\left[\mathrm{St}_{F} \Delta\right] \rightarrow 0
$$

which we denote by P^{\bullet}. Hence ${ }^{\prime} E_{2}$ is:

so the only nonzero entries lie in the d th column or the -1 st row. All differentials have trivial source or target, so the spectral sequence collapses on the second page. Note in particular that

$$
\begin{equation*}
H^{i}(\operatorname{Tot}) \cong H^{i+1}\left(K^{\bullet} \otimes_{\mathcal{R}} k^{*}[\Delta]\right), \quad 0 \leq i \leq d-2 \tag{2}
\end{equation*}
$$

Turning now to the row-wise spectral sequence, note that $K^{s} \otimes_{\mathcal{R}} \widetilde{P}^{t} \rightarrow$ $K^{s+1} \otimes_{\mathcal{R}} \widetilde{P}^{t}$ maps vertical cocycles to vertical cocycles of positive monomial degree, which must be vertical coboundaries since \widetilde{P}^{\bullet} is exact in positive monomial degrees. Hence the differentials in $H_{I I}^{\bullet \bullet}\left(K^{\bullet} \otimes_{\mathcal{R}} \widetilde{P}^{\bullet}\right)$ are zero, so
$\left.{ }^{\prime \prime} E_{2}^{s, t}=H_{I}\left(H_{I I}^{s, t}\left(K^{\bullet} \otimes_{\mathcal{R}} \widetilde{P}^{\bullet}\right)\right)=H_{I I}^{s, t}\left(K^{\bullet} \otimes_{\mathcal{R}} \widetilde{P}^{\bullet}\right) \cong K^{s} \otimes_{\mathcal{R}} \widetilde{H}^{t}(\Delta) \cong \widetilde{H}^{t}(\Delta)\right)^{\left({ }^{d}{ }^{d}\right)}$.
By a similar diagram chase, the differentials on " E_{2} are all zero, so " $E_{\text {- }}$ collapses on the second page. Since we are over a field there are no extension
problems, so " E • gives

$$
\begin{equation*}
H^{i}\left(\operatorname{Tot}^{\bullet}\right) \cong \bigoplus_{j=0}^{i} \widetilde{H}^{j}(\Delta)^{\binom{d}{d-i+j}} \tag{3}
\end{equation*}
$$

Comparing (2) and (3), we find

$$
\begin{equation*}
H^{i+1}\left(K^{\bullet} \otimes_{\mathcal{R}} k^{*}[\Delta]\right) \cong \bigoplus_{j=0}^{i} \widetilde{H}^{j}(\Delta)^{\binom{d}{d-i+j}} \tag{4}
\end{equation*}
$$

from which the conclusion follows immediately.
Remark. In [Adi18], the spectral sequences associated with the double complex $K^{\bullet} \otimes_{\mathcal{R}} \widetilde{P}^{\bullet}$ (with $k=\mathbb{R}$) are used to calculate

$$
H^{-1}\left(P^{\bullet}\right)=\operatorname{ker}\left(\mathscr{A}^{*}(\Delta) \rightarrow \bigoplus_{v \in \Delta^{(0)}} \mathscr{A}^{*}\left(\operatorname{St}_{v} \Delta\right)\right)
$$

for Δ a Buchsbaum complex by observing from ' E_{2} and (3) that

$$
H^{-1}\left(P^{\bullet}\right) \cong H^{d-1}\left(\operatorname{Tot}^{\bullet}\right) \cong \bigoplus_{j=0}^{d-1} \widetilde{H}^{j}(\Delta)^{\binom{d}{j+1}}
$$

Here $H^{-1}\left(P^{\bullet}\right)$ comes with a grading, and by tracking monomial degrees one finds that the $\widetilde{H}^{j}(\Delta){ }^{\binom{d+1}{j+1} \text {-summand corresponds to the }(j+1) \text { st graded piece, }}$ so

$$
\operatorname{ker}\left(\mathscr{A}^{j}(\Delta) \rightarrow \bigoplus_{v \in \Delta^{(0)}} \mathscr{A}^{j}\left(\operatorname{St}_{v} \Delta\right)\right) \cong H^{j-1}(\Delta)^{\binom{d}{j}}
$$

Remark. Keeping track of monomial degrees, the isomorphism (4) implies the following extension of Reisner's theorem: If Δ is an $(n-2)$-acyclic Buchsbaum complex (for some $n \leq d$), then any linear system of parameters $\theta_{1}, \ldots, \theta_{d} \in$ $k^{1}[\Delta]$ is regular up to degree n.

References

[Adi18] Karim Adiprasito, Combinatorial Lefschetz theorems beyond positivity, 2018.
[Eis95] David Eisenbud, Commutative algebra with a view toward algebraic geometry, 1 ed., Graduate Texts in Mathematics, Springer-Verlag, 1995.
[Lan02] Serge Lang, Algebra, 3 ed., Graduate Texts in Mathematics, Springer, 2002.
[Rei76] Gerald Reisner, Cohen-Macaulay quotients of polynomial rings, Adv. in math. 21 (1976), 30-49.
[Sta96] Richard Stanley, Combinatorics and commutative algebra, 2 ed., Progress in Mathematics, vol. 41, Birkhauser Boston Inc., 1996.

[^0]: ${ }^{1}$ This approach to Reisner's theorem is due to Adiprasito.
 ${ }^{2}$ From now on, the field k is implicit: Simplicial homology is always taken with coefficients in k and Cohen-Macaulay means Cohen-Macaulay over k.

