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Overview

These are notes for my TopTop presentation on Verdier’s six-functor formalism for locally
compact Hausdorff spaces. The original reference is [Ver65]. Akhil Mathew’s well-written
notes [Mat11] provide a helpful companion to this paper.

In the spirit of TopTop, these notes will take a modern approach to the six-functor
formalism for locally compact Hausdorff spaces. In [Lur14], Lurie explains how his covariant
Verdier duality theorem [Lur17, 5.5.5.4] can be used to produce the two most difficult functors
f! and f

! from a map of locally compact Hausdorff spaces f .1 We will cover this in Sections 1
and 2, but leave the proof of covariant Verdier duality to Section 6. The remaining sections
are spent fleshing out as much of the full six-functor formalism as I’ve been able to. The
results are summarized in Theorem 5.1.

Comments and corrections are welcome!

A note on ambiguity. The term “canonical” is ambiguous in mathematics, but is useful for
other things besides giving the reader (or perhaps the author) a false sense of security. In
these notes, it always indicates that the object referred to as such (1) has been or (2) will
be uniquely defined up to contractible ambiguity. Here are two representative examples:

(1) In the definition of C-valued sheaves given below, we consider the “canonical map
F(U) → lim←−V

F(V )”. Implicitly, this refers to any map belonging to the contractible
space of maps coming from the cone {F(U) → F(V )}V via the universal property of
limits.

(2) In Proposition 2.2, I write: “There is a canonical natural transformation f! → f∗”.
This means that I will give a recipe for the intended object which only depends on a
contractible space of choices (often the recipe is in the proof). When I later refer to
“the canonical natural transformation f! → f∗”, this ensures that the object appearing
in your head and the object appearing in my head will belong to the same contractible
space of choices.

1 (co)Sheaves

Let C be an ∞-category admitting all small limits and colimits.

Definition. For a topological space X, a C-valued sheaf on X is a presheaf F ∈ PShC(X) =
Fun(U(X)op,C) such that for each cover {Uα → U}, the canonical map

F(U)→ lim←−V
F(V )

1Here f! corresponds to the functor Rf! from the old approach to Verdier duality. The old f! is constructed
explicitly by letting f!F be the subsheaf of f∗F consisting of sections with proper support over the base.
This f! is generally neither a left adjoint nor a right adjoint, but it is by construction left exact, so it makes
sense to consider the right derived functor Rf!. Verdier then proves that Rf! has a right adjoint f !, which
is the same as our f !.
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is an equivalence, where V ranges over open subsets contained in some Uα. Let ShC(X) ⊆
PShC(X) be the full subcategory spanned by sheaves.

Remark. This agrees with the general definition of sheaves on an∞-category equipped with a
Grothendieck topology (HTT 6.2.2) because U(X) is small, so every covering sieve is stupidly
generated by a cover (e.g. the cover consisting of all elements of the sieve).

Proposition 1.1. The inclusion ShC(X) ⊆ PShC(X) has a left adjoint, called sheafification.
If filtered colimits in C are left exact (e.g. if C is stable), then sheafification is left exact.

Proof. Lurie constructs the sheafification of space-valued presheaves in the proof of [Lur04,
9.0.6], but the construction only uses the existence of small limits and (filtered) colimits,
whereas exactness precisely uses that filtered colimits are exact.

Corollary 1.2. If C is stable, then ShC(X) is stable.

Proof. Filtered colimits in C are left exact, so the proposition implies that ShC(X) is a left
exact localization of the stable ∞-category PShC(X).

If C is presentable, we have an improved version of Proposition 1.1 which will be used
later. Recall that a subcategory C0 ⊆ C of a presentable∞-category is strongly reflective if C0

is stable under equivalences in C and the inclusion i : C0 ⊆ C admits a left adjoint L : C→ C0

such that the endofunctor iL : C → C is accessible. Equivalently, C0 ⊆ C is a reflective
subcategory which is stable under equivalences and such that C0 is again presentable.

Proposition 1.3. If C is presentable, then ShC(X) is a strongly reflective subcategory of
PShC(X). In particular, ShC(X) is presentable.

Proof. This follows from [Lur09b, 5.5.4.(17-19)].

Remark. It is tempting to assume that C is presentable from the get-go and replace Proposi-
tion 1.1 by Proposition 1.3. But below we consider sheaves valued in Cop, and it is very rarely
the case that both C and Cop are presentable ∞-categories, so a theory of sheaves valued in
presentable ∞-categories would be insufficient for our purposes, even though we are even-
tually only interested in such C. When C is stable (as it mostly will be in these notes), the
situation is especially bad. Suppose that C is stable with both C and Cop presentable. Then
the homotopy categories hC and h(Cop) ≃ (hC)op are again presentable. But since C → hC
preserves products and coproducts, the 1-category hC also has a zero object, so by [GU71,
7.13] hC is equivalent to the terminal category. Hence all objects of C are equivalent, and
since C has a zero object we have in fact that all objects of C are zero objects, so C is also
equivalent to the terminal category.

A continuous map f : Y → X induces a functor f−1 : U(X)op → U(Y )op, which in turn
gives a precomposition functor (f−1)∗ : PShC(Y ) → PShC(X). This functor has left and
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right adjoints given by (pointwise!) left and right Kan extension respectively. Following the
notation in [Lur09b, 4.3.3], we write these adjunctions as

PShC(Y ) PShC(X)
(f−1)∗

(f−1)!

(f−1)∗

The functor (f−1)∗ maps sheaves to sheaves. We let f∗ : ShC(Y ) → ShC(X) denote its
restriction to sheaves. We refer to this functor as pushforward. It fits into an adjunction

ShC(Y ) ShC(X)
f∗

f∗

where f ∗ is the so-called pullback functor defined by

ShC(X) ⊆ PShC(X)
(f−1)!−−−→ PShC(Y )→ ShC(Y ),

where the last functor is sheafification.

Remark. From now on, the symbol f∗ (resp. f ∗) can either mean right Kan extension along
f (resp. precomposition by f) or the pushforward (resp. pullback) map that we just defined
depending on whether f is a morphism in the category of topological spaces or a morphism
in the category of simplicial sets (which is how we consider f−1 above). Later, I will also use
the lower shriek symbol f! to denote the exceptional pushforward functor (to be defined) if
f is a morphism of topological spaces. If the reader type checks morphisms, these notational
overlaps should not cause any confusion. (The star-shriek notation for Kan extensions is
justified by the six-functor formalism for simplicial sets – and it looks better than clunky
symbols involving Lan and Ran.)

We will also need the following simple fact:

Proposition 1.4. Let j : V ↪→ X be an open embedding. Then j∗ is given by restriction
and j∗ is fully faithful.

Proof. Clearly restriction satisfies the pointwise definition of Kan extensions [Lur09b, 4.3.3.2]
since for U ⊆ V open, the poset {W ⊆ U, U open inX} has U as its terminal object.

With respect to this restriction model of j∗, the counit j∗j∗ → 1 is given pointwise by
identities. Hence it is a natural equivalence. This implies that j∗ is fully faithful.

Definition. The ∞-category of C-valued cosheaves on C is coShC(X) = ShCop(X)op.

Pushforward and pullback of Cop-valued sheaves induces an adjunction

coShC(Y ) coShC(X)
f+

f+

by taking opposites (reversing the roles of left and right adjoint!).
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2 Covariant Verdier duality

Let C be a stable∞-category admitting all small limits and colimits. In [Lur17, 5.5.5], Lurie
shows:

Theorem 2.1 (Verdier duality). Let X be a locally compact Hausdorff space. Then there
is a canonical adjoint equivalence

ShC(X) ≃ coShC(X),

which we will denote by DX or, if multiple coefficient categories are being considered, by
DX,C.

Concretely, the equivalence is given as follows. Every presheaf F ∈ PShC(X) has an
associated co-presheaf of compactly supported sections Fc ∈ PShCop(X) given by

Fc : U 7→ lim−→K⊆U
(fib (F(X)→ F(X −K))) ,

where K ranges over compact subsets of U . Hausdorff-ness ensures that X −K is open, so
F(X − K) makes sense. This (contravariant!) construction defines a functor PShC(X) →
PShCop(X)op. The equivalence DX,C is the restriction of this construction to sheaves. (In
particular, F 7→ Fc sends sheaves to cosheaves.)

Given a map f : Y → X of locally compact Hausdorff spaces, Verdier duality now pro-
duces an adjunction D−1

X f+DY =: f! ⊣ f ! := D−1
Y f+DX , where D

−1
X and D−1

Y are picked from
the contractible spaces of inverses to DX and DY . Thus f gives rise to adjunctions

ShC(Y ) ShC(X)

f∗

f∗

f !

f!

such that all four adjoints can be viewed as values of f under functors (contravariant in the
case of f ∗ and f !) from LCHaus to the∞-category of stable∞-categories. In particular, for

composable maps Z
g−→ Y

f−→ X, there are canonical equivalences

(fg)! ≃ f!g! and (fg)! ≃ g!f !

Remark. In the classical situation C = D(A), A a commutative ring, these facts were histor-
ically shown using the Leray spectral sequence. In Lurie’s approach, which we have taken
here, they follow directly from definitions.

A common feature of six-functor formalisms is that the so-called exceptional functors f!
and f !, which may be difficult to understand in general, will sometimes coincide with their
ordinary counterparts.

Proposition 2.2. There is a canonical natural transformation Nmf : f! → f∗ which is an
equivalence if f is proper.
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Proof. Equivalently, there is a natural transformation f+DY → DXf∗ defined uniquely up
to contractible choice, such that f+DY → DXf∗ is an equivalence when f is proper.

For Z ⊆ Y closed and F ∈ ShC(Y ), let FZ denote the fiber fib(F(Y )→ F(Y −Z)). Then
by definition (f+DY F)(V ) = lim−→K

FK and (DXf∗F)(V ) = lim−→L
Ff−1L, with K ranging over

compact subsets of f−1V and L ranging over compact subsets of V . The “corestriction”
maps FK → Ff−1(fK), which come from restricting F(Y − K) → F(Y − f−1(fK)), induce
a map (f+DY F)(V ) → (DXf∗F)(V ) which is compatible with corestrictions and natural in
F, thus giving the desired natural transformation f+DY → DXf∗. If f is proper, then each
f−1(fK) is again a compact subset of f−1V and the maps FK → Ff−1(fK) are transition
maps, hence induce an equivalence upon taking colimits.

A result in the same style holds for upper shriek:

Proposition 2.3. Let j : V ↪→ X be an open embedding. Then there is a canonical natural
equivalence j! ≃ j∗. Furthermore, j! is given by

(j!F) (U) =

{
F(U) if U ⊆ V,

0, otherwise,

with restrictions and functoriality given in the obvious way.

Proof. For the first statement, it suffices to construct a natural equivalence j+DX ≃ DV j
∗

depending only on contractible choices. Let F ∈ ShC(X), U ⊆ V open. Then for each K ⊆ U
compact, note that since X −K ⊇ U −K ⊆ U is cofinal in the poset {W ⊆ X open | W ⊆
X − K or W ⊆ U} (hence final upon taking opposites), the sheaf condition for the cover
{X −K,U} of X implies that

F(X) F(U)

F(X −K) F(U −K)

is a pullback. Hence the induced map on fibers

fib (F(X)→ F(X −K))→ fib (F(V )→ F(V −K))

(uniquely defined up to contractible choice) is an equivalence. Taking colimits over K on
both sides, we get an equivalence

(j+DXF)(U)→ (DV j
∗F)(U)

(again uniquely defined up to contractible choice) which is compatible with corestriction
maps and natural in F.

The fact that j! = j∗ is given by restriction can also be written j∗ = (j)∗, where
j : U(V )op → U(X)op is the map of posets defined by j(U) = jU = U . But then the
left adjoint j! is left Kan extension along j which is given by the formula in the second
statement.
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3 Base change

Classically, base change is shown using universality of effaceable cohomological δ-functors
(see [Mat11]). This approach is not available in the general setup of the previous sections.
Nonetheless, Lurie has shown:

Theorem 3.1 (Nonabelian proper base change). Let C be an∞-category admitting all small
limits and colimits and having enough compact objects. Given a Cartesian diagram

Y ′ Y

X ′ X

g′

p′ p

g

(3.1)

of locally compact Hausdorff spaces with p proper, the canonical natural transformation

g∗p∗ → p′∗p
′∗g∗p∗ ≃ p′∗g

′∗p∗p∗,→ p′∗g
′∗

is a natural equivalence of functors ShC(Y )→ ShC(X
′).

Proof. This is [Lur09b, 7.3.1.19].

Remark. Here Cartesian means Cartesian in the (1-)category of topological spaces. Since
locally compact Hausdorff spaces are compactly generated, there is no room for confusion
even if you are used to k-ifying every topological space in sight.

Remark. In the literature, the map g∗p∗ → p′∗g
′∗ is called the Beck–Chevalley morphism (or

simply the base-change morphism) associated to the square (3.1). Note that for us it is
uniquely defined only up to contractible choice.

In this section, we will recover the familiar general base change result involving lower
shriek functors by piggybacking on Lurie’s theorem. The only other input is an easy lemma:

Lemma 3.2. Let f : Y → X be a continuous map and let j : V ↪→ X be an open embedding.
Form the pullback

f−1(V ) V

Y X

fV

j′ j

f

Then the canonical natural transformation

j∗f∗ → j∗f∗j
′
∗j

′∗ ≃ j∗j∗(fV )∗j
′∗ → (fV )∗j

′∗

is an equivalence.

Proof. Using that j∗ and j′∗ are given by restricting, the claim can be checked directly.
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Remark. Using Lemma 2.3, we can also write this equivalence as j!f∗
∼−→ (fV )∗j

′!.

Theorem 3.3 (Base change). Given a Cartesian diagram of locally compact Hausdorff
spaces

Y ′ Y

X ′ X

g′

f ′ f

g

then there are canonical equivalences

g∗f!
∼−→ f ′

! g
′∗ and f !g∗

∼−→ g′∗f
′!,

Proof. Giving one equivalence (uniquely up to contractible choice) is equivalent to giving
the other (uniquely up to contractible choice).

We first reduce to the case of X compact. Let j : X ↪→ X ∪ {∞} be the one-point
compactification of X. This is an open embedding since X is locally compact Hausdorff. In
particular, it is injective, so below the outer square is again Cartesian:

Y ′ Y

X ′ X

X ∪ {∞}

g′

f ′ f
jf

g

jg

j

Assume base change holds for the outer diagram. Then we have canonical equivalences

g′∗f
′! ∼←− (jf)!(jg)∗ = f !j∗j∗g∗

∼−→ f !g∗, (3.2)

where we have used that j! = j∗ by Lemma 2.3 and the last map comes from contracting
j∗j∗ → 1, which is an equivalence since the right adjoint j∗ is fully faithful. But (3.2) is
precisely base change for the inner square. Thus we may assume that X is compact.

If X is compact, the map f : Y → X factors uniquely through the Stone-Čech compact-
ification Y ↪→ βY , which is an open embedding since Y is locally compact Hausdorff. Thus
we have a commutative diagram

Y ′ Y

Z βY

X ′ X

g′

f ′
1 j

h

f ′
2 p

g

where both inner squares and the outer square (which is the square we eventully care about)
are Cartesian. But here p is trivially proper since it is a map of Hausdorff spaces with
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compact domain. Thus base change holds for the lower square by Theorem 3.1 and for
the upper square by Lemma 3.2. Base change for the outer square now follows by an easy
diagram chase.

4 Monoidal structure

In this section, we produce the remaining two functors of the six-functor formalism by
showing that if C⊗ is a presentably symmetric monoidal ∞-category, then ShC(X) has a
canonical (presentably) symmetric monoidal structure.

As in the classical setting, the symmetric monoidal structure on sheaves arises by sheafi-
fying the pointwise symmetric monoidal structure on presheaves. Here we will need two
basic results which I cannot find in the holy texts.

First, an obvious symmetric analogue of a remark that can be found “somewhere in
Lurie” [Lur09a, 1.1.18]:

Proposition 4.1. Let C⊗ be a symmetric monoidal ∞-category. Then for any simplicial
set K there is a symmetric monoidal structure on Fun(K,C), called the pointwise symmetric
monoidal structure, whose underlying tensor product is equivalent to

Fun(K,C)× Fun(K,C) ∼= Fun(K,C× C)
(−⊗−)∗−−−−→ Fun(K,C),

where −⊗− is any choice of tensor product on C.

Proof. Let C⊗ → Fin∗ be the coCartesian fibration encoding the symmetric monoidal struc-
ture on C. Postcomposition gives a coCartesian fibration Fun(K,C⊗)→ Fun(K,Fin∗). Form
the pullback

Fun(K,C)⊗ Fun(K,C⊗)

Fin∗ Fun(K,Fin∗)

where the bottom map sends ⟨n⟩ to the constant functor at ⟨n⟩. Then the lefthand map is
again a coCartesian fibration, Note that by construction Fun(K,C)⊗⟨n⟩ = Fun(K,C⊗

⟨n⟩), and

in particular Fun(K,C)⊗⟨1⟩ = Fun(K,C).

A morphism in Fun(K,C)⊗ is coCartesian if and only if it is pointwise coCartesian [Lur09b,

3.1.2.1], so a straightening Fin∗ → Ĉat∞ of Fun(K,C⊗)→ Fin∗ maps f : ⟨m⟩ → ⟨n⟩ to post-
composition by the image of f under some straightening of C⊗ → Fin∗. Hence the underlying
tensor product of the pointwise monoidal structure is as desired.

In particular, the proposition promotes PShC(X) to a symmetric monoidal ∞-category
PShC(X)⊗ for any topological space X.

Proposition 4.2. Let C⊗ be a symmetric monoidal ∞-category and let f : K → L be a
map of simplicial sets. Then

9



(1) Precomposition f ∗ : Fun(L,C)→ Fun(K,C) can be given the structure of a symmetric
monoidal functor with respect to the pointwise monoidal structures.

(2) If in addition tensoring − ⊗ − : C × C → C preserves colimits in each variable, then
left Kan extension f! : Fun(K,C) → Fun(L,C) can also be promoted to a symmetric
monoidal functor (if it exists).

Proof. Using the construction from the proof of Proposition 4.1, note that precomposition
f ∗ : Fun(L,C⊗) → Fun(K,C⊗) restricts to a functor Fun(L,C)⊗ → Fun(L,C)⊗ mapping
coCartesian edges to coCartesian edges since coCartesian-ness is checked pointwise. The
restriction to fibers over ⟨1⟩ is exactly f ∗ : Fun(L,C)→ Fun(K,C). This proves (1).

As for (2), recall that the left Kan extension f! is left adjoint to f ∗ [Lur09b, 4.3.3.7].
By standard nonsense (e.g. [Lur17, 7.3.2]), we can then equip f! with the structure of a
lax symmetric monoidal functor, i.e. we can promote it to a morphism f⊗

! : Fun(K,C)⊗ →
Fun(L,C)⊗ of ∞-operads. The cocontinuity assumption on −⊗− now implies that f⊗

! has
the property of being symmetric monoidal (since left Kan extensions are computed pointwise
by colimits).

For the remainder of this section, we assume that C⊗ is a presentably symmetric monoidal
∞-category, meaning that C is presentable and tensoring preserves colimits in each variable.
Equivalently, C⊗ is an E∞-algebra in PrL,⊗, where the symmetric monoidal structure on
PrL,⊗ is the Lurie tensor product. In particular, these assumptions guarantee that for every
M ∈ C (and some choice of tensor product), the endofunctor − ⊗ M has an (essentially
unique) right adjoint Hom(M,−).

Proposition 4.3. The pointwise symmetric monoidal structure makes PShC(X)⊗ presentably
symmetric monoidal for each topological space X.

Proof. Presentability is [Lur09b, 5.5.3.6] and cocontinuity of the pointwise tensor product
comes from cocontinuity of the tensor product in C and the fact that colimits in PShC(X)
are computed pointwise.

Thus PShC(X)⊗ has its own internal Hom, which we denote by Hom. We will use the
following fact:

Lemma 4.4. If F ∈ PShC(X) and F′ ∈ ShC(X), then Hom(F,F′) ∈ ShC(X).

Proof. For each open U ⊆ X, let RU : PShC(X)→ PShC(X) denote the obvious endofunctor
with

(RUG)(V ) = G(U ∩ V ).

Note that an inclusion V ⊆ U induces a restriction map RUG → RV G. Since limits in
PShC(X) are computed pointwise, the sheaf condition on G is equivalent to requiring that
the map

RUG→ lim←−
V

RV G (4.1)

10



is an equivalence for any cover {Uα → U} and with V ranging over the covering sieve
generated by this cover.

The endofunctor RU has a left adjoint LU with

(LUG)(V ) =

{
G(V ), V ⊆ U,

∅C, otherwise.

(Here ∅C denotes an initial object in C.) Since the tensor product is assumed to be cocon-
tinuous in each variable, we have in particular ∅C ⊗ c ≃ ∅C for each c ∈ C. But then for
arbitrary presheaves G,G′, we have canonical equivalences

LUG⊗ G′ ≃ LU (G⊗ G′) ≃ G⊗ LUG
′. (4.2)

We now use (4.1) to check that Hom(F,F′) is a sheaf. For every presheaf G, the map
RUHom(F,F′)→ lim←−V

RVHom(F,F′) induces

Map(G, lim←−V
RVHom(F,F′)) ≃ lim←−V

Map(LUG,Hom(F,F′))

≃ lim←−V
Map(LU(G⊗ F),F′)

≃ Map(G⊗ F, lim←−V
RV F

′)

≃ Map(G⊗ F, RUF
′)

≃ Map(G⊗ LUF,F
′)

≃ Map(G, RUHom(F,F′)),

and the conclusion follows by the Yoneda lemma.

Let p : PShC(X)⊗ → Fin∗ denote the coCartesian fibration encoding the pointwise sym-
metric monoidal structure on PShC(X). Define ShC(X)⊗ to be the full subcategory of
PShC(X)⊗ spanned by objects of the form F1 ⊕ · · · ⊕ Fn for F1, . . . ,Fn ∈ ShC(X), in the
notation of [Lur17, 2.1.1.15].

Proposition 4.5. The restriction p | ShC(X)⊗ : ShC(X)⊗ → Fin∗ is a coCartesian fibration,
making ShC(X) a presentably symmetric monoidal ∞-category. The adjunction

ShC(X) PShC(X)
L

i

where L is sheafification, can be promoted to an adjunction

ShC(X)⊗ PShC(X)⊗
L⊗

i⊗

where L⊗ is monoidal and i⊗ is lax monoidal.
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Proof. Denote the sheafification functor by L. Using the theory of monoidal localiza-
tions [Lur17, 2.2.1], it suffices to show that if φ : F1 → F2 is an L-equivalence of presheaves
and F is any presheaf, then φ⊗F : F1 ⊗F → F2 ⊗F is again an L-equivalence. To see this,
let G ∈ ShC(X) be any sheaf. Adjunction gives a commutative diagram of mapping spaces

Map(F2 ⊗ F,G) Map(F1 ⊗ F,G)

Map(F2,Hom(F,G)) Map(F1,Hom(F,G))

(φ⊗F)∗

∼ ∼

φ∗

Here the bottom arrow is an equivalence by Lemma 4.4 and the assumption that φ is an
L-equivalence. Hence the top arrow is an equivalence by two out of three. Since G was an
arbitrary sheaf, it follows that φ⊗ F is an L-equivalence as desired.

Proposition 4.6. Let f : Y → X be a map of spaces. Then the adjunction

ShC(Y ) ShC(X)
f∗

f∗

can be given the structure of a monoidal adjunction, promoting f ∗ to a symmetric monoidal
functor and f∗ to a lax monoidal functor.

Proof. Denote the sheafification functors by LY and LX and the right adjoint inclusions by
iY and iX , so that by definition f ∗ = LY (f

−1)!iX . Propositions 4.2 and 4.2 promote f ∗ to a
map of ∞-operads (f ∗)⊗ = L⊗

Y (f
−1)⊗! i

⊗
X . It remains to show that (f ∗)⊗ carries coCartesian

edges to coCartesian edges.
Note that an edge φ of ShC(X)⊗ is coCartesian if and only if it is equivalent to an edge of

the form L⊗
Xψ where ψ is a coCartesian edge of PShC(Y )⊗. A quick calculation shows that

the canonical transformation LY (f
−1)!iXLX → LY (f

−1)! is an equivalence, and hence that
L⊗
Y (f

−1)⊗! i
⊗
XL

⊗
X → L⊗

Y (f
−1)⊗! is an equivalence. But then

(f ∗)⊗L⊗
Xψ = L⊗

Y (f
−1)⊗! i

⊗
XL

⊗
Xψ ≃ L⊗

Y (f
−1)⊗! ψ

is coCartesian since L⊗
Y (f

−1)⊗! is symmetric monoidal.

5 Summary and applications

Let LCHaus denote the category of locally compact Hausdorff spaces. Collecting the results
of Sections 2, 3 and 4 (and with a little extra work), we get (cf. [GR17, p. 273]):

Theorem 5.1. Let C⊗ be a stable presentably symmetric monoidal ∞-category whose un-
derlying category C has enough compact objects. Then there are functors LCHausop →
AlgE∞(PrL,⊗) and LCHaus→ PrL given on objects by X 7→ ShC(X) and on morphisms by
f 7→ f ∗ (right adjoint: f∗) and f 7→ f! (right adjoint: f

!) respectively.
For any map f : Y → X in LCHaus, we have
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(1) (Enriched adjunction) There are equivalences

f∗Hom(f ∗G,F) ≃ Hom(G, f∗F) (5.1)

natural in F ∈ ShC(Y ), G ∈ ShC(X).

(2) (Proper adjunction) There is a canonical natural transformation

f! → f∗

which is an equivalence if f is proper.

(3) (Open adjunction) Let j : V ↪→ Y be an open embedding. There is a canonical natural
equivalence j! ≃ j∗.

(4) (Base change) Given a Cartesian diagram

Y ′ Y

X ′ X

g′

f ′ f

g

there are canonical equivalences.

g∗f!
∼−→ f ′

! g
′∗ and f !g∗

∼−→ g′∗f
′!

Assume further that C⊗ is rigid in the sense of [GR17, p. 79]. Then we also have

(1) (Enriched adjunctions+) There are equivalences

f∗Hom(F, f !G) ≃ Hom(f!F,G) (5.2)

natural in F ∈ ShC(Y ), G ∈ ShC(X).

(5) (Projection formula) SupposeX has finite covering dimension. The functor f! : ShC(Y )→
ShC(X) can be given the structure of a map of ShC(X)⊗-modules, where the module
structure on ShC(Y ) comes from the monoidal map f ∗. In particular, this means that
there are equivalences

f!(F ⊗ f ∗G) ≃ f!F ⊗ G (5.3)

natural in F ∈ ShC(Y ), G ∈ ShC(X).

Proof. Items (2), (3) and (4) are exactly Propositions 2.2, 2.3, and 3.3.
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The equivalence (5.1) follows formally from symmetric monoidality of f ∗. Indeed, for any
sheaf L ∈ ShC(Y ), we have equivalences

Map(L,Hom(F, f∗G)) ≃ Map(L⊗ F, f∗G)

≃ Map(f ∗L⊗ f ∗F,G)

≃ Map(L, f∗Hom(f ∗F,G))

natural in L, F and G. Similarly, (5.2) will follow once we know (5.3) via the natural
equivalences

Map(L,Hom(f!F,G)) ≃ Map(L⊗ f!F,G)
≃ Map(f!(f

∗L⊗ F),G)

≃ Map(f ∗L⊗ F, f !G)

≃ Map(L, f∗Hom(F, f !G)).

As for (5), first note that if i : X ↪→ X∪{∞}, then f! = i∗(if)! since i is an open embedding,
so using the description of i! in Proposition 2.3 one sees that i∗i! ≃ 1. Since i∗ is a map of
modules, it will suffice to show that (if)! is a map of modules, i.e. we have reduced to the
case of X compact. If X is compact, the universal property of Stone-Čech compactification

allows us to factor f as Y
j−→ βY

p−→ X, where j is an open embedding and p is proper. It
suffices to see that j! and p! are strict functors of ShC(X)⊗-modules.

By (3), j! is left adjoint to j! = j∗ which comes with a canonical structure of a map of
ShC(βY )⊗-modules. General nonsense implies that j! gets a structure of a left-lax map of
ShC(βY )⊗-modules (e.g. [GR17, p. 41]). Strictness of this left-lax structure follows from
the explicit description of j! given in Proposition 2.3. Being a functor of ShC(βY )⊗-modules
implies that j! is in particular a functor of ShC(X)⊗-modules.

Similarly, p! = p∗ gets a structure of a right-lax functor of ShC(X)⊗-modules. Hence it
suffices to see that the natural transformation p∗F⊗G→ p∗(F⊗p∗G) coming from adjunction
is an equivalence. Theorem 7.2.3.6 and Corollary 7.2.1.12 in [Lur09b] imply that ShC(X) is
hypercomplete, so equivalences of sheaves are detected stalkwise. Using this fact and proper
base change (which by construction is compatible with the right-lax structures on proper
pushforwards), we are reduced to the case X = {∗}. But here ShC(X)⊗ ≃ C⊗ is rigid, so
by [GR17, p. 83] the right-lax structure on p∗ is automatically strict.

Example. Let C⊗ = LMod⊗
A be the symmetric monoidal∞-categories of A-modules for some

A ∈ AlgE∞(Sptr). Then C⊗ is a rigid [GR17, p. 79] presentably symmetric monoidal stable
∞-category. Thus the full version of Theorem 5.1 holds for these coefficient categories.
By [Lur17, 7.1.1.16], this includes the classical examples C⊗ = D(A)⊗ for A a discrete
commutative ring.

Verdier’s six-functor formalism – or rather, the cheaper four functor formalism of Sec-
tions 2 and 3 – gives us a handy way to understand homology (plain and Borel–Moore) and
cohomology (plain and compactly supported) of locally compact Hausdorff spaces. Namely,
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let M ∈ C where C is a stable ∞-category admitting all small limits and colimits. If
p : X → ∗ is the projection from a locally compact Hausdorff space to a point, then we have
the following dictionary:

cohomology with coefficients in M p∗p
∗M

homology with p!p
!M

compactly supported cohomology with p!p
∗M

Borel–Moore homology with p∗p
!M

This dictionary offers a convenient way to understand the functoriality of all four theories.
A map f : Y → X of locally compact Hausdorff spaces gives a commutative diagram

Y X

∗

f

p q

Using the unit 1→ f∗f
∗ and counit f!f

! → 1, we get canonical natural transformations

p∗p
∗ = (qf)∗(qf)

∗ ≃ q∗f∗f
∗q∗ ← q∗q

∗ and p!p
! = (qf)!(qf)

! ≃ q!f!f
!q! → q!q

!

capturing respectively the contravariance of cohomology and covariance of homology. If f is
proper, then the same unit and counit give

p!p
∗ = (qf)!(qf)

∗ ≃ q!f∗f
∗q∗ ← q!q

∗ and p∗p
! = (qf)∗(qf)

! ≃ q∗f!f
!q! → q∗q

!,

showing that compactly supported cohomology is contravariant in proper maps and Borel-
Moore homology is covariant in proper maps.

In the same way that Grothendieck duality generalizes Serre duality, the adjunction (5.2)
is a generalization of Poincaré duality to locally compact Hausdorff spaces. Spelling this
out, note that if 1 denotes the unit of C⊗, then for any locally compact Hausdorff space
p : X → ∗, we have

Hom(p!p
∗1,1) ≃ Hom(1, p∗p

!1) ≃ p∗p
!1, (5.4)

i.e. Borel-Moore homology is the dual of compactly supported cohomology. If X is a d-
dimensional manifold and C⊗ = D(Z)⊗, a local computation shows that p!1 ≃ ωX [d] where
ωX is the classical orientation sheaf of X. (See [Mat11, 5.5] for details.) By definition X
is orientable if and only if ωX ≃ p∗1, where choosing an equivalence ωX ≃ p∗1 is the same
as choosing an orientation of X. Hence the calculation (5.4) shows that Hom(p!p

∗1,1) ≃
p∗p

∗1[d]. Finally, X is compact if and only if p is proper, in which case p∗ ≃ p!, so we arrive
at the most familiar version of Poincare duality: if X is a compact orientable d-manifold,
then Hom(p∗p

∗1,1) ≃ p∗p
∗1[d].
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6 Proof of covariant Verdier duality

In this section we prove Theorem 2.1 following Lurie’s proof in [Lur17, 5.5.5].
Let C be a stable ∞-category admitting all small limits and colimits, and let X be a

locally compact Hausdorff space. A key ingredient in the proof of Verdier duality is that we
can model C-valued sheaves on X by functors defined on compact subsets of X rather than
open subsets. For this model, the sheaf condition becomes:

Definition. Let K(X) denote the poset of compact subsets of X. A K-sheaf on X is a
functor F ∈ Fun(K(X)op,C) satisfying:

(1) F(∅) = 0.

(2) For K1, K2 ∈ K(X), the diagram

F(K1 ∪K2) F(K1)

F(K2) F(K1 ∩K2)

is a pullback square.

(3) For each K ∈ K(X), the canonical map

lim−→L
F(L)→ F(K)

is an equivalence, where L ranges over compact subsets of X such that K ⊆ U ⊆ L
for some open U in X.

Let ShK
C (X) denote the full subcategory of Fun(K(X)op,C) spanned by K-sheaves.

Theorem 6.1. For F ∈ Fun((U(X) ∪K(X))op ,C), the following conditions are equivalent:

(1) The restriction Fcpt = F |K(X)op is a K-sheaf and F is a right Kan extension of Fcpt.

(2) The restriction Fopen = F |U(X)op is a sheaf and F is a left Kan extension of Fopen.

Furthermore, let A ⊆ Fun((U(X) ∪K(X))op ,C) denote the full subcategory spanned by
functors satisfying the equivalent conditions (1) and (2). Then the restriction maps

ShC(X)← A→ ShK
C (X)

are trivial Kan fibrations.

Proof. The equivalence of conditions (1) and (2) is [Lur09b, 7.3.4.9]. The last statement
now follows via [Lur09b, 4.3.2.15].

16



A similar approach is used in the proof of Verdier duality, i.e. the equivalence DX will
arise as a zigzag of restriction maps which have adjoint inverses given by Kan extension
functors.

Let M be the poset of pairs (S, i), 0 ≤ i ≤ 2 and S ⊆ X with S compact if i = 0, X − S
compact if i = 2, and with order given by (S, i) ≤ (T, j) if S ⊆ T and i ≤ j or if i = 0 and
j = 2. With respect to the projection onto the second factorM → [2], note thatM0 = K(X)
and M1

∼= K(X)op via (S, 2) 7→ X − S.

Lemma 6.2. For F ∈ Fun(M,C), the following conditions are equivalent:

(1) The restriction (F |M0)
op : K(X)op → Cop is a K-sheaf, F |M1 = 0, and F is a left Kan

extension of F |M0 ∪M1.

(2) The restriction F |M2 : K(X)op → C is a K-sheaf, F |M1 = 0, and F is a right Kan
extension of F |M1 ∪M2.

Modulo the lemma, we can then prove Verdier duality:

Proof of Theorem 2.1. Let E ⊆ Fun(M,C) denote the full subcategory spanned by functors
satisfying the equivalent conditions of the lemma. Using [Lur09b, 4.3.2.15] and Theorem 6.1,
we have a zigzag of restriction maps

ShC(X)← A→ ShK
C (X)← E→ coShK

C (X)← A′ → coShC(X), (6.1)

all of which are equivalences with adjoint inverses given by Kan extending in the appropriate
direction. Here A is as in the statement of Theorem 6.1 with A′ is defined analogously and
coShK

C (X) = ShK
Cop(X). The formula F 7→ Fc for the resulting equivalence is found by chasing

through (6.1) using the pointwise formulas for Kan extensions.

Sketch of proof of Lemma 6.2. It suffices to show (2) implies (1) since the other direction is
symmetric via the order-reversing self-bijectionM →M given by (S, i) 7→ (X−S, 2−i). For
this direction, it is convenient to enlarge M by also allowing (S, 2) with X−S open. Denote
the larger poset by M ′. With respect to the projection M ′ → [2], we now have M ′

i = Mi

for i = 0, 1 and M ′
2 = (U(X) ∪K(X))op. The point of working with this larger poset is that

we can outsource some hard work to Theorem 6.1. Namely, let B ⊆ Fun(M ′,C) be the full
subcategory spanned by functors satisfying

(i) F |M2 is a K-sheaf,

(ii) F |M ′
2 is a right Kan extension of F |M2,

(iii) F |M1 = 0, and

(iv) F is a right Kan extension of F |M1 ∪M2.
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Applying [Lur09b, 4.3.2.15], we have that the restriction B → E is a trivial Kan fibration,
so in particular it has a section (given by Kan extending in this case). Hence it will suffice
to show that for any F ∈ B, F |M satisfies condition (1). But from Theorem 6.1 and
using [Lur09b, 4.3.2.15] again, restriction also gives a trivial Kan fibration B→ ShC(X). For
F ∈ B restricting to G ∈ ShC(X), one finds by chasing around using the pointwise formulas
for Kan extensions that F0 = F |M0 is given by F0(K) = fib (G(X)→ G(X −K)). To verify
condition (1), we first check that Fop

0 : K(X)op → Cop is a K-sheaf. There are three things
to check:

(i) F0(∅) = fib(G(X)→ G(X −∅)) = 0.

(ii) For K1, K2 ⊆ X compact, we must show that

F0(K1 ∩K2) F0(K1)

F0(K2) F0(K1 ∪K2)

(6.2)

is a pullback square in Cop or equivalently a pushout square in C. But we can write
this square as the fiber of

G(X) G(X)

G(X − (K1 ∩K2)) G(X −K1)

G(X) G(X)

G(X −K2) G(X − (K1 ∪K2))

which is a map of pullback squares, so (6.2) is again a pullback square and hence a
pushout square since C is stable.

(iii) For the third condition, note that since limits preserve fiber sequences, we have for
each K ∈ K(X) the following map of fiber sequences:

F0(K) lim←−K⋐L
F0(L)

G(X) lim←−K⋐L
G(X)

G(X −K) lim←−K⋐L
G(X − L)
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where K ⋐ L is shorthand for the condition that there is an open U in X with
K ⊆ U ⊆ L. Since {X − L | K ⋐ L} is a covering sieve of X − K, the bottom
map is an equivalence. The middle horizontal map is an equivalence since the poset
{L | K ⋐ L} is filtered. Hence the uppermost map is an equivalence as desired.

Hence F0 is a K-sheaf. It remains to be seen that F |M is a left Kan extension of F |M0∪M1.
By [Lur09b, 4.3.2.8], it suffices to show that F |M is a left Kan extension of F |M ′′, where
M ′′ ⊆ M is the subposet defined by only allowing (S, 1) with S compact. Furthermore, let
B ⊆ M ′

2 be the subposet of pairs (S, 2) having X − S open with compact closure. Again
using [Lur09b, 4.3.2.8], it will be enough to show

(i) F |M ′′ ∪M ′
2 is a left Kan extension of F |M ′′ ∪B,

(ii) F |M ′′ ∪B is a left Kan extension of F |M ′′.

For (i), note that F |M ′
2 is a left Kan extension of F |M ′′′, where M ′′′ ⊆M ′

2 is the subposet
consisting of (S, 2) with X − S compact or open with compact closure. This follows from
Theorem 6.1 and the fact that for compact K, the open U ⊇ K with U compact are
cofinal in the poset of neighborhoods of K. Thus it suffices to observe that the inclusion
M ′′′

/(X−K,2) ⊆ M ′′ ∪ M ′′′
/(X−K,2) is cofinal. This can be checked using Quillen’s Theorem

A [Lur09b, 4.1.3.1].
It remains to prove (ii). For this, let (S, 2) ∈ B. We wish to show that F(S, 2) is

a colimit of F |M ′′
/(S,2). For K ⊆ X compact, let M ′′

K be the subposet of M ′′ formed by

(L, i) with (K, 0) ≤ (L, i) ≤ (S, 2). Note that M ′′
/(S,2) is a filtered colimit of the simpli-

cial sets M ′′
K for K ⊇ X − S, so by general nonsense we can compute lim−→F |M ′′

/(S,2) as

lim−→{lim−→K
F |M ′′

K}K⊇X−K . Let U = X − S. But the span (K, 0)← (K − U, 0)→ (K − U, 1)
is cofinal in M ′′

K , so we need only show that the corresponding diagram

F(K − U, 0) F(K − U, 1)

F(K, 0) F(S, 2)

is a pushout. Consider the larger diagram

F(K − U, 0) (((((((
F(K − U, 1)

F(K, 0) T �����F(K, 1)

F(∅, 2) F(K − U, 2) F(K, 2)

F(X − U, 2) �����F(X, 2)
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where T is the pullback of the middle right square. Here we have used that F |M1 = 0
and F(X, 2) = G(∅) = 0 to cancel out three corners. By the description of F0 = F |M0

given at the start of the proof, we see that the middle horizontal rectangle and left verticle
rectangles are pullbacks (i.e. they are fiber sequences). Hence by general nonsense the left
middle square and uppermost square are pullback. It now suffices to see that the composition
T → F(X − U, 2)→ F(X − U, 2) is an equivalence. For this it suffices to see that the right
verticle rectangle is a pullback square, and since we have already seen that its upper square
is a pullback, we need only show that the lowermost square is a pullback. But this square is
exactly

G(X −K ∪ U) G(X −K)

G(U) G(∅)

which is a pullback since G is a sheaf.
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