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Abstract. We describe the compact objects in the ∞-category of C-valued sheaves Shv(X, C)
on a hypercomplete locally compact Hausdorff space X, for C a compactly generated stable

∞-category. When X is a non-compact connected manifold and C is the unbounded derived
category of a ring, our result recovers a result of Neeman. Furthermore, for X as above and

C a nontrivial compactly generated stable ∞-category, we show that Shv(X, C) is compactly

generated if and only if X is totally disconnected.

The aim of this note is to clarify and expand on a point made by Neeman [Nee01]. Let M be a
non-compact connected manifold, and let Shv(M,D(Z)) denote the unbounded derived category
of sheaves of abelian groups on M . Neeman shows that, up to equivalence, the only compact
object in Shv(M,D(Z)) is the zero sheaf. This implies that Shv(M,D(Z)) is very far from
compactly generated. Nevertheless, it follows from Lurie’s covariant Verdier duality theorem
[Lur17, Thm 5.5.5.1] that Shv(M,D(Z)) satisfies a related smallness condition: it is dualizable
in the symmetric monoidal ∞-category Pr⊗stab of stable presentable ∞-categories, which holds
more generally if M is replaced with any locally compact Hausdorff space X. Although every
compactly generated presentable stable∞-category is dualizable [Lur18, Prop D.7.2.3], Neeman’s
example thus shows that the converse is false. The existence of this large and interesting class
of stable presentable ∞-categories that are dualizable but not compactly generated forms part
of the motivation behind Efimov’s continuous extensions of localizing invariants [Efi22], see also
[Hoy18].

This note is concerned with the following two questions about the ∞-category of C-valued
sheaves on a general locally compact Hausdorff space X, where C is some compactly generated
stable ∞-category (e.g. the unbounded derived ∞-category of a ring or the ∞-category of
spectra):

(1) How rare is it for Shv(X, C) to be compactly generated?
(2) How far is Shv(X, C) from being compactly generated in general?

With a relatively mild completeness assumption on X (see Section 1), we answer question (2)
by showing that a C-valued sheaf F on X is compact as an object of Shv(X, C) if and only
if it has compact support, compact stalks, and is locally constant (Theorem 2.3).1 Thus if X
is for instance a CW complex, the subcategory of compact objects Shv(X, C)ω depends only
on the homotopy type of the compact path components of X, and it is therefore impossible to
reconstruct the entire sheaf category Shv(X, C) from this information.

In his 2022 ICM talk, Efimov mentions that the ∞-category of D(R)-valued sheaves on a
locally compact Hausdorff space X ‘is almost never compactly generated (unless X is totally
disconnected, like a Cantor set)’ [Efi22, slide 13]. As a corollary to our description of the compact
objects of Shv(X, C), we verify–modulo the same completeness assumption mentioned above–
that indeed the only locally compact Hausdorff spaces X with Shv(X, C) compactly generated,
for some nontrivial C, are the totally disconnected ones (Proposition 3.1), thereby answering
question (1).
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1Since posting this note on the arXiv, we became aware that Scholze has indicated a proof of this statement

for C = D(Z) in his notes on six-functor formalisms [Sch, Prop 7.11]. The approach taken there, which uses

descent to deduce the general statement from the case where X is a profinite set, is different from the one we
take.
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Notation and conventions. Throughout this note, we use the theory of higher categories
and higher algebra, an extensive textbook account of which can be found in the work of Lurie
[Lur09, Lur17, Lur18]. We will also make frequent use of the six-functor formalism for derived
sheaves on locally compact Hausdorff spaces, as described classically by [Ver65] and with general
coefficients by [Vol23].

For convenience, we assume the existence of an uncountable Grothendieck universe U of small
sets and further Grothendieck universes U ′ and U ′′ of large and very large sets respectively, such
that U ∈ U ′ ∈ U ′′. ‘Topological space’ always implicitly refers to a small topological space,
and similarly with ‘spectrum’. On the other hand, an ‘∞-category’ is an ‘(∞, 1)-category’ is

a quasicategory, which unless otherwise stated is large. We let Ĉat∞ denote the very large
∞-category of (large) ∞-categories.

Because we are dealing with sheaves on topological spaces, we deem it best to make a clear
distinction between actual topological spaces on the one hand, and on the other hand the objects
of the ∞-category S of ‘spaces’ in the sense of Lurie. Following the convention suggested in
[CS23], we will refer to the latter as anima.

Given an ∞-category C, we let Cω ⊆ C denote the subcategory spanned by the compact
objects. Recall that an object C ∈ C is said to be compact if the presheaf of large anima
D 7→ MapC(C,D) preserves small filtered colimits.

Acknowledgements. I was partially supported by the Danish National Research Foundation
through the Copenhagen Centre for Geometry and Topology (DRNF151). I am grateful to
Marius Verner Bach Nielsen for comments on the draft, and to Jesper Grodal and Maxime
Ramzi for valuable discussions about the arguments appearing in this note.

1. C-hypercomplete spaces

Given an ∞-category C and a topological space X, we let Shv(X, C) denote the ∞-category of
C-valued sheaves on X in the sense of Lurie [Lur09]. That is, Shv(X, C) is the full subcategory
of the presheaf ∞-category Fun(Open(X)op, C) consisting of presheaves F satisfying the sheaf
condition: for any open set U ⊆ X and any open cover {Ui → U}i∈I , the canonical map

F (U) → limV F (V )

is an equivalence, where V ranges over open sets V ⊆ Ui ⊆ X, i ∈ I, considered as a poset under
inclusion. When C = S is the ∞-category of anima, we will abbreviate Shv(X) = Shv(X,S).

Remark 1.1. When C = D(R) is the unbounded derived ∞-category of a ring, the ∞-category
Shv(X,D(R)) is related to, but generally not the same as, the derived ∞-category D(Shv(X,R))
of the ordinary category of sheaves of R-modules on X, which is the object studied (via its
homotopy category) by Neeman [Nee01]. However, they do coincide under the completeness
assumption that we will impose on X below, see [Sch, Prop 7.1]. Since this completeness
assumption is verified when X is a topological manifold, our results include those of Neeman.

We are interested in topological spaces satisfying the following condition:

Definition 1.2. A topological space X is C-hypercomplete if the stalk functors x∗ : Shv(X, C) →
C are jointly conservative for x ranging over the points of X.

The reason for our choice of terminology is that X is S-hypercomplete if and only if the 0-
localic ∞-topos Shv(X) has enough points, which is equivalent to Shv(X) being hypercomplete
as an ∞-topos by Claim (6) in [Lur09, § 6.5.4]. (This is not true for arbitrary ∞-topoi, i.e.
there are hypercomplete ∞-topoi that do not have enough points.) This subtlety, whereby a
morphism of sheaves may fail to be an equivalence even though it is so on all stalks, does not
occur for non-derived sheaves: the 1-topos Shv(X,S≤0) of sheaves of sets on a topological space
X always has enough points. We refer to [Lur09, § 6.5.4] for a discussion of why it is often
preferable in the homotopical setting to work with non-hypercomplete sheaves, rather than, say,
imposing hypercompleteness by replacing Shv(X) with its hypercompletion Shv(X)∧.

The following observation provides us with a source of C-hypercomplete spaces:
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Proposition 1.3. Let X be an S-hypercomplete topological space. Then X is also C-hypercomplete
for any compactly generated ∞-category C.

Proof. Let Funlex(Cω,Shv(X)) ⊆ Fun(Cω,Shv(X)) denote the full subcategory spanned by left
exact functors, i.e. functors that preserve finite limits. The statement then follows from the fact
that there is a natural equivalence

(1) Shv(X, C) → Funlex(Cω,Shv(X))

which is given informally by sending a sheaf F to the functor

C 7→ [U 7→ MapC(C,F (U))],

see [ØJ22, Lem B.3]. □

The literature describes several classes of topological spaces that are S-hypercomplete. Here
is a list of some classes of topological spaces that have this property:

• paracompact spaces that are locally of covering dimension ≤ n for some fixed n [Lur09,
Cor 7.2.1.12],

• arbitrary CW complexes [Hoy16],
• finite-dimensional Heyting spaces [Lur09, Rem 7.2.4.18], and
• Alexandrov spaces, since the ∞-topos of sheaves associated to an Alexandrov space is

equivalent to a presheaf ∞-topos.

2. When is a sheaf compact?

Let C be a compactly generated stable ∞-category, e.g. the unbounded derived category D(R)
of a ring R or the ∞-category of spectra Sp. Given a sheaf F ∈ Shv(X, C), we define the support
of F by

suppF = {x ∈ X | Fx ̸≃ 0} ⊆ X.

As in [Nee01], our study of the compact objects of Shv(X, C) proceeds from an analysis of their
supports. By slightly adapting the proof of [Nee01, Lem 1.4], we get the following description of
the support of a compact sheaf:

Lemma 2.1. Let X be a C-hypercomplete locally compact Hausdorff space and let F ∈ Shv(X, C)ω.
Then the support suppF is compact.

Proof. We first show that suppF is contained in a compact subset of X. Consider the canonical
map

(2) colimU (jU )!j
∗
UF → F ,

where the colimit ranges over the poset of precompact open sets ordered by the rule U ≤ V if
U ⊆ V , and for each such U we have denoted by jU : U ↪→ X the inclusion. Since precompact
open sets form a basis for the topology on X, the map (2) is an equivalence of sheaves. Let

ϕ : F
∼−→ colimU (jU )!(jU )

∗F be some choice of inverse. Any finite union of precompact open sets
is again precompact open, so the poset of precompact open sets is filtered. Hence compactness
of F implies that ϕ factors through (jU )!j

∗
UF for some precompact open U , and it follows that

suppF is contained in a compact subset U ⊆ X, as claimed.
By the above, it remains only to be seen that suppF is closed, or equivalently that its

complement X \ suppF is open. Suppose x ∈ X \ suppF . Then we have a recollement fiber
sequence

j!j
∗F → F → i∗i

∗F ,

where j : X \ {x} ↪→ X and i : {x} ↪→ X are the inclusions, and since x ̸∈ suppF we have
j!j

∗F ≃ F . Since j! is a fully faithful left adjoint, it reflects compact objects, and we conclude
that j∗F is again compact. But then j∗F is supported on a compact subset of X \ {x} by the
above, which must be closed as a subset of X, and hence x lies in the interior of X \ suppF as
desired. □
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Lemma 2.2. If f : X → Y is a proper map of locally compact Hausdorff spaces, then the
pullback functor f∗ preserves compact objects. In particular, if X is a compact Hausdorff space
and E ∈ Cω, then EX ∈ Shv(X, C)ω, where EX denotes the constant sheaf at E.

Proof. Since f is proper, the pullback f∗ is left adjoint to f∗ ≃ f!, which is itself left adjoint to
f !. Hence f∗ preserves colimits, and it follows that its left adjoint f∗ preserves compact objects.
The statement about constant sheaves follows by taking f to be the projection from X to a
point. □

Our main result is the following description of the compact objects in Shv(X, C):

Theorem 2.3. Let X be a C-hypercomplete locally compact Hausdorff space. A sheaf F ∈
Shv(X, C) is compact if and only if

(i) suppF is compact;
(ii) F is locally constant; and
(iii) Fx ∈ Cω for each x ∈ X.

In particular, note that conditions (i) and (ii) together imply that if F is compact, then the
support F must be a compact open subset of X. On the other hand, (iii) guarantees that if F
is constant on U ⊆ X, say with value E, then E ∈ Cω.

Proof. ‘Necessity.’ Suppose we are given F ∈ Shv(X, C)ω. Then F must satisfy (i) by
Lemma 2.1 and (ii) by Lemma 2.2, since the stalk Fx at x ∈ X is the same as the pull-
back i∗xF along the inclusion ix : {x} ↪→ X, which is always a proper map. It remains only to
be seen that F is locally constant. Fix a point x ∈ X, and let ix again denote the inclusion of
this point into X. Let E = i∗xF denote the stalk of F at x. By [Lur09, Cor 7.1.5.6], there is
an equivalence colimU F (U) ≃ E, where U ranges over the poset of open neighborhoods of x.
As E is compact, this implies that F (U) → E has a section for some U . Pick a precompact
open neighborhood W ∋ x with W ⊆ U , and let i : W ↪→ X denote the inclusion. As the
canonical map F (U) → E factors through the restriction F (U) → (i∗F )(W ) → F (W ), the
map (i∗F )(W ) → E also admits a section E → (i∗F )(W ). Viewing the latter as a morphism
from the constant presheaf with value E to i∗F , we get an induced map σ : EW → i∗F of

sheaves over W which by construction induces an equivalence of stalks at x. Here both EW and
i∗F are compact, so the cofiber Q = cofib(σ) is again compact. But then suppQ is compact,
so W ′ = W \ suppQ is open and Qx ≃ 0 so x ∈ W ′. Furthermore, σ restricts to an equivalence

EW

x

E

W ′ = W \ suppQ

F
Q

X

Figure 1. ‘Espace étale’ visualization of the fiber sequence EW → F → Q

of sheaves on W ′ by construction, so F |W ′ is equivalent to the constant sheaf on W ′ with value
E, as desired.

‘Sufficiency.’ Let i : suppF ↪→ X denote the inclusion. Since i is both proper and an open
immersion, both i∗ ≃ i! and i∗ ≃ i! preserve and reflect compact objects. We may therefore
assume that X is compact, after possibly replacing it with suppF . Pick a finite collection of
closed subsets Zi ⊆ X, i = 1, . . . , n, such that F is constant in a neighborhood of each Zi and
such that X is covered by the interiors Zo

i . Descent (Corollary A.3) implies that the canonical
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functor

Shv(X, C)

→ lim∆≤n−1

(
Shv(

⋂n
1 Zi, C) · · ·

∏
i,j Shv(Zi ∩ Zj , C)

∏
i Shv(Zi, C)

...

)
is an equivalence. Write I = {1, . . . , n} for short and put ZJ =

⋂
j∈J Zj for each J ⊆ I.

The canonical projection from Shv(X, C) to Shv(ZJ , C) is the restriction map. By construc-
tion, we have that for each J ⊆ I, the restriction F |ZJ

is constant with value a compact
object, and hence compact as an object of Shv(ZJ , C) by the preceding lemma. According to
[Lur09, Lem 6.3.3.6], the identity functor id : Shv(X, C) → Shv(X, C) is the colimit of a diagram
∆≤n−1 → Fun(Shv(X, C),Shv(X, C)) which sends the object [k] ∈ ∆≤n−1 to the composition

‘ Shv(X, C)
∏
J⊆I,
|J|=k

Shv(ZJ , C) Shv

( ∐
J⊆I,
|J|=k

ZJ , C
)

Shv(X, C),

i∗k

≃ (ik)∗

and so for any filtered system {Gα}α∈A, we find

Map(F , colimA Gα) ≃ lim[k]∈∆≤n−1
Map(F , (ik)∗i

∗
k colimGα)

≃ lim[k]∈∆≤n−1
Map(i∗kF , colimA i∗kGα)

≃ lim[k]∈∆≤n−1
colimA Map(i∗kF , i∗kGα)

≃ colimA lim[k]∈∆≤n−1
Map(i∗kF , i∗kGα)

≃ colimA Map(F ,Gα),

where the third equivalence uses that the restriction i∗kF is compact2 and the second-last equiv-
alence uses that filtered colimits are left exact in S. □

As a corollary, we recover Neeman’s result:

Corollary 2.4 (Neeman). Let M be a non-compact connected manifold. Then F ∈ Shv(M, C)ω
if and only if F ≃ 0.

In fact our result shows that the conclusion of Neeman’s result holds more generally if M is
replaced by a C-hypercomplete locally compact Hausdorff space X whose quasicomponents are
all non-compact.

As a further corollary to our theorem, we will describe the dualizable objects of the category of
sheaves on a locally compact Hausdorff space. Suppose that C has the structure of a presentably
monoidal ∞-category C⊗ ∈ AlgE1

(Pr⊗stab), meaning roughly that C has a coherently associative
and unital tensor product ⊗ that commutes with colimits in each variable. We let 1 ∈ C denote
the unit with respect to ⊗. Recall that an object D ∈ C is said to be right dualizable if there
exists an object D∨ ∈ D and a morphism e : D∨ ⊗D → 1 such that for all E,F ∈ C, the map

(3) MapC(E,F ⊗D∨)
−⊗D−−−→ MapC(E ⊗D,F ⊗D∨ ⊗D)

(F⊗e)◦−−−−−→ MapC(E ⊗D,F )

is an equivalence. Right dualizability is an algebraic smallness condition, just as compactness is
a purely categorical smallness condition. Indeed, if the unit 1 is compact as an object of C, then
by a well-known observation every right dualizable object of C is compact. To see this, suppose

2Indeed, we have already observed that F |ZJ
is compact for each J , and hence the associated object i∗kF in

the product ΠJ Shv(ZJ , C)is also compact according to [Lur09, Lem 5.3.4.10].
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D ∈ C is right dualizable and I → C, i 7→ Ei, is a filtered diagram of objects in C. Then we have
the following commutative diagram:

MapC(D, colimI Ei) colimI MapC(D,Ei)

MapC(1⊗D, colimI Ei) colimI MapC(1⊗D,Ei)

MapC(1, (colimI Ei)⊗D∨)) colimI MapC(1, Ei ⊗D∨)

MapC(1, colimI(Ei ⊗D∨))

≃ ≃

≃ ≃

≃ ≃

where the vertical maps in the top square are induced by the unit equivalences D ≃ 1 ⊗ D,
the vertical maps in the second square are the equivalences of the form (3) coming from the
assumption that D is dualizable, and the lower triangle shows that the lowest straight horizontal
arrow factors as post-composition with the canonical equivalence

(colimI Ei)⊗D∨) ≃ colimI(Ei ⊗D∨),

where we use that ⊗ preserves colimits, followed by the canonical map

MapC(1, colimI(Ei ⊗D∨)) → colimI MapC(1, Ei ⊗D∨),

which we know to be an equivalence by our assumption that 1 is compact.

Given a presentably monoidal stable ∞-category C⊗ as above and a topological space X, one
can equip also the ∞-category of C-valued sheaves Shv(X, C) with the structure of a presentably
monoidal ∞-category, which is roughly given by defining the tensor product of F ,G ∈ Shv(X, C)
to be the sheafification of the presheaf

U 7→ F (U)⊗ G (U).

(For a precise definition, see e.g. the discussion following [Vol23, Thm 1.3].) The unit with
respect to this tensor product is the constant sheaf 1X at the unit 1 ∈ C, and for each continuous
map f : Y → X, the pullback f∗ : Shv(X, C) → Shv(Y, C) can be canonically endowed with the
structure of a monoidal functor. In a similar vein to the question answered by Theorem 2.3, one
could ask for a classification of the dualizable objects of Shv(X, C)⊗ with respect to the monoidal
structure defined above, when X is a C-hypercomplete locally compact Hausdorff space. It turns
out that it is now straightforward to answer this question:

Corollary 2.5. Let C⊗ be a presentably monoidal stable ∞-category, whose underlying ∞-
category is compactly generated and such that the unit 1 ∈ C is compact. Let X be a C-
hypercomplete locally compact Hausdorff space. With respect to the induced symmetric monoidal
structure on Shv(X, C), a sheaf F ∈ Shv(X, C) is right dualizable if and only if

(i) F is locally constant, and
(ii) Fx ∈ C is right dualizable for each x ∈ X.

Proof. ‘Sufficiency.’ Let F be a sheaf satisfying conditions (i) and (ii), and let U be an open
cover of X such that F |U is equivalent to a constant sheaf for each U ∈ U . Čech descent implies
that Shv(X, C) is equivalent to the limit limV Shv(V, C), as V runs over the poset of open sets
V such that V ⊆ U for some U ∈ U . For each of these V we have that F |V is equivalent to a
constant sheaf, which if V ̸= ∅ will be of the form π∗Fx, where π : V → ∗ is the projection and
Fx is the stalk at any x ∈ V . But π∗ is monoidal and hence preserves right dualizable objects,
whence we by dualizability of Fx know that F |V is right dualizable too. It now follows from the
descent property for dualizability [Lur17, Prop 4.6.1.11] that F is right dualizable as an object
of Shv(X, C).

‘Necessity.’ Assume that F is right dualizable, and let x ∈ X be some point. The condition
on the stalks is immediate, since pullback preserves dualizable sheaves. We must show that F
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is locally constant in a neighborhood of x. Pick a precompact open neighborhood U ∋ x. Then
F |U is again right dualizable, and since the monoidal unit 1U ≃ π∗1 ∈ Shv(U, C) is compact, it

follows that F |U is compact as an object of Shv(U, C). But then the previous theorem implies

that it must be locally constant on U , and hence also on the subset U as desired. □

The preceding argument gives an analogous classification of the left dualizable sheaves, where
left dualizability in a presentably monoidal ∞-category C⊗ defined in terms of a morphism
e : D ⊗D∨ → 1 instead.

3. When is Shv(X, C) compactly generated?

In this section, we prove the following characterization of those locally compact Hausdorff
spaces X that have Shv(X, C) compactly generated:

Proposition 3.1. Let C be a non-trivial compactly generated stable ∞-category, and let X be a
C-hypercomplete locally compact Hausdorff space. Then Shv(X, C) is compactly generated if and
only if X is totally disconnected.

Remark 3.2. If X is totally disconnected, then X is automatically S-hypercomplete. This
follows from [Lur09, Rmk 7.2.4.18], since X is a zero-dimensional. In particular, this does not
require X to be paracompact.

3.1. Proof of the proposition. The proof will use the following observation:3

Lemma 3.3. Let C be a compactly generated stable ∞-category, and let {Ci}i∈I and {Di}i∈I be
filtered systems in C indexed over the same poset I.

(1) Suppose that for each i ∈ I, there is some j ≥ i so that the transition map Ci → Cj

factors through the zero object ∗. Then colimI Ci ≃ ∗. If each Ci is compact, then the
converse holds.

(2) Suppose that for each comparable pair i ≤ j in I there are horizontal equivalences making

Ci Di

Cj Dj

≃

≃

commute, where the vertical maps are the transition maps. If each Ci is compact, then
colimI Ci ≃ ∗ if and only if colimI Di ≃ ∗.

Proof. Note that (2) follows from (1), since the existence of such commutative squares implies
that {Ci}I has the vanishing property for transition maps described in (1) if and only if {Di}I
has that property.

For the first claim in (1), it suffices to show that MapC(D, colimi∈I Ci) is contractible for each
compact object D ∈ Cω. For this, first observe that

π0 MapC(D, colimi∈I Ci) ∼= colimi∈I π0 Map(D,Ci) ∼= ∗,
since our assumption guarantees that any homotopy class D → Ci is identified D → ∗ → Ci

after postcomposing with the transition map Ci → Cj for sufficiently large j ≥ i. Applying the
same argument for the compact object ΣnD, n ≥ 1, we find that

πn MapC(D, colimi∈I Ci) ∼= π0 MapC(Σ
nD, colimi∈I Ci)

vanishes also.
Assume now that each Ci is compact and that colimI Ci ≃ ∗. Then

colimj∈I MapC(Ci, Cj) ≃ MapC(Ci, colimj∈I Cj),

3I am thankful to Maxime Ramzi for pointing out that an earlier incarnation of this lemma, which appeared in
the first arXiv version of this note, was incorrect. The following proof of the more restricted lemma was suggested

to me by Jesper Grodal (and also by Ramzi when he pointed out the error). Fortunately, the arguments in this
note only ever required the current version of the lemma.
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and since π0 commutes with filtered colimits of anima, it follows that for sufficiently large j ≥ i
the transition map Ci → Cj is homotopic to Ci → ∗ → Cj . □

Proof of Proposition 3.1. ‘Sufficiency.’ The∞-category of sheaves of anima Shv(X) is compactly
generated by [Lur09, Prop 6.5.4.4], and hence so is Shv(X, C) ≃ Shv(X)⊗C according to [Lur17,
Lem 5.3.2.11].

‘Necessity.’ Let x ∈ X. We must show that if y ∈ X lies in the same connected component
as X, then y = x. For this, pick an object C ̸≃ 0 in C and let x∗C denote the skyscraper sheaf
at x with value C. By assumption there is a filtered system {Fi}i∈I of compact sheaves with
colimI Fi ≃ x∗C. For each i, the fact that Fi is locally constant and that x and y lie in the same
connected component means there is a non-canonical equivalence of stalks x∗Fi ≃ y∗Fi. One
should not expect to find a system of such non-canonical equivalences assembling into a natural
transformation, essentially because the neighborhoods on which the Fi are constant could get
smaller and smaller as i increases. Nevertheless, given a comparable pair i ≤ j in I, one can
pick equivalences making the diagram

(4)

x∗Fi y∗Fi

x∗Fj y∗Fj

≃

≃

commute, where the vertical maps are the transition maps. To see this, simply note that the set
of z ∈ Z for which there is a commutative diagram

x∗Fi z∗Fi

x∗Fj z∗Fj

≃

≃

is a clopen subset of X, since any point admits a neighborhood on which both Fi and Fj are
constant. Since all of the Fi have compact stalks by Theorem 2.3, it follows from Lemma 3.3
that the stalk (x∗C)y ≃ colimI y

∗Fi is nonzero. But X is Hausdorff, so this implies that y = x
as desired. □

Remark 3.4. Lemma 3.3 is also true if C is any ordinary category, e.g. the category of abelian
groups Ab. It is illuminating to consider why the lemma holds in this concrete setting. Given a
filtered system of abelian groups {Ai}i∈I , the associated colimit can be described as the quotient
of

⊕
I Ai by the subgroup consisting of elements a − φij(a) where a ∈ Ai and φij : Ai → Aj

is the transition map for some j ≥ i. Clearly colimI Ai
∼= 0 is implied by the assumption that

for every i ∈ I there is j ≥ i with φij : Ai → Aj being zero. For the partial converse, assume
now that each Ai is a compact object of Ab, i.e. a finitely generated abelian group, and that
colimI Ai

∼= 0. Let i ∈ I and pick a generating set a1, . . . , an for Ai. Since colimI Aj
∼= 0, there

is j1, . . . , jn ≥ i with φijs(as) = 0 for each s. Using that I is filtered, pick j ∈ I so that j ≥ js
for each s. Then φij(as) = φjsjφijs(as) = 0 for each s, and hence φij = 0.

3.2. Hausdorff schemes. Unlike in point-set topology, compactly generated categories of sheaves
are abundant in algebraic geometry. Recall that a topological space X is said to be locally spec-
tral if it is homeomorphic to the underlying space of a scheme, and simply spectral if it is
homeomorphic to the underlying space of an affine scheme. Using results of Hochster [Hoc69],
Proposition 3.1 can be interpreted as saying that Shv(X, C) is only compactly generated when
X happens to come from algebraic geometry:

Proposition 3.5. Let C be a nontrivial compactly generated stable ∞-category, and let X be a
C-hypercomplete locally compact (resp. compact) Hausdorff space Then Shv(X, C) is compactly
generated if and only if X is locally spectral (resp. spectral).
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Indeed, a locally compact Hausdorff space is totally disconnected if and only if it admits a
basis of compact open sets if and only if it is the underlying space of a scheme. The second
equivalence is the Hausdorff case of [Hoc69, Thm 9].

For the first equivalence, note in one direction that if X admits a basis of compact open sets,
then every x ∈ X has {x} =

⋂
U∋x U , with U ranging over compact open neighborhoods of x.

Since each compact open neighborhood is clopen, we thus have that {x} is a quasi-component
in X, and hence that X is totally disconnected.

For the other direction, we must show that for every x ∈ X and every open neighborhood
V ∋ x, there is a compact open W with x ∈ W ⊆ V . Since X is locally compact, we may assume
that V is precompact. By assumption {x} =

⋂
U∋x U , with U ranging over clopen neighborhoods

of x. Since each of these U is in particular closed, we have that each U ∩ ∂V is compact. By the
finite intersection property, it therefore follows from

⋂
U∋x U ∩ ∂V = ∅ that for small enough

clopen U ∋ x, U∩∂V = ∅. Hence U∩V = U∩V is a compact open neighborhood of x contained
in V , as desired.

3.3. When is Shv(X) compactly generated? Proposition 3.1 says that the ∞-category of
sheaves on X with coefficients in a stable ∞-category is rarely compactly generated when X is
a locally compact Hausdorff space. If we had asked the same question ‘without coefficients,’ this
would have been an easier observation:

Proposition 3.6. Let X be a quasi-separated4 topological space. The ∞-topos Shv(X) of sheaves
of anima on X is compactly generated if and only if the sobrification of X is the underlying space
of a scheme.

Proof. One direction is [Lur09, Thm 7.2.3.6]. For the other direction, assume that Shv(X) is
compactly generated. Then so is the frame U ≃ τ≤−1 Shv(X) of open subsets of X by [Lur09,
Cor 5.5.7.4]. But this means that X admits a basis of compact open sets, and hence the
sobrification of X is the underlying space of a scheme according to [Hoc69, Thm 9]. □

Appendix A. Descent for maps with local sections

In this short appendix, we prove a descent lemma that was used in the proof of Theorem 2.3,
which is an immediate generalization of [SD72, Cor 4.1.6].

Let C be a compactly generated ∞-category and let f : X → Y be a continuous map of
topological spaces. Recall that the Čech nerve of f is the augmented simplicial topological space
X• with X−1 = Y and p-simplices

Xp = X ×Y · · · ×Y X︸ ︷︷ ︸
p times

for p ≥ 0, with face maps given by projections and degeneracy maps given in the obvious
way. More formally, if ∆+ is the category of finite (possibly empty) ordinals and T op is the
category of topological spaces, then X• : ∆

op
+ → T op is defined by right Kan extending (f : X →

Y ) : ∆op
+,≤0 → T op along the inclusion functor ∆op

+,≤0 ⊂ ∆op
+ .

Letting Shv∗(−, C) denote the contravariant functor from T op to Ĉat∞ given informally by
X 7→ Shv(X, C) on objects and f 7→ f∗ on morphisms, we then have the following useful
definition:

Definition A.1. The function f is of C-descent type if the canonical functor

Shv(X, C) → lim∆ Shv∗(X•, C)
is an equivalence.

Let us say that f admits local sections if for every x ∈ X, there is an open set U ∋ x such
that the restriction f : f−1(U) → U admits a section.

4Recall that a topological space X is said to be quasi-separated if for any pair of compact open subsets
U, V ⊆ X, the intersection U ∩ V is again compact. Note that all Hausdorff spaces are quasi-separated.
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Proposition A.2. If f admits local sections, then f is of C-descent type.

Proof. By ordinary Čech descent, we may assume that f admits a section globally on X, after
possibly passing to an open cover of X on which this is true. Let ε : Y → X be a choice of such
a section. The section ε allows us to endow the Čech nerve X• with the structure of a split
augmented simplicial space, by defining the extra degeneracies hi : Xp → Xp+1 by

hi(x0, . . . , xp) = (x0, . . . , xi−1, ε(y), xi, . . . , xp)

where y = f(x0) = · · · = f(xp). It then follows that the split coaugmented cosimplicial ∞-
category Shv∗(X•, C) is a limit diagram by [Lur09, Lem 6.1.3.16] □

Corollary A.3. Let {Ai}i∈I be a collection of subsets of X such that X =
⋃

I A
o
i , where Ao

i is
the interior of Ai. Then the canonical map

∐
I Ai → X is of C-descent type.

Proof. The canonical map
∐

I Ai → X admits a section on Ao
j given by Ao

j ↪→ Aj →
∐

I Ai,
where the second map is the canonical injection. □
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[Ver65] Jean-Louis Verdier. Dualité dans la cohomologie des espaces localement compacts. Séminaire Bourbaki,
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